Reliability in content analysis: The case of semantic feature norms classification.
نویسندگان
چکیده
Semantic feature norms (e.g., STIMULUS: car → RESPONSE: ) are commonly used in cognitive psychology to look into salient aspects of given concepts. Semantic features are typically collected in experimental settings and then manually annotated by the researchers into feature types (e.g., perceptual features, taxonomic features, etc.) by means of content analyses-that is, by using taxonomies of feature types and having independent coders perform the annotation task. However, the ways in which such content analyses are typically performed and reported are not consistent across the literature. This constitutes a serious methodological problem that might undermine the theoretical claims based on such annotations. In this study, we first offer a review of some of the released datasets of annotated semantic feature norms and the related taxonomies used for content analysis. We then provide theoretical and methodological insights in relation to the content analysis methodology. Finally, we apply content analysis to a new dataset of semantic features and show how the method should be applied in order to deliver reliable annotations and replicable coding schemes. We tackle the following issues: (1) taxonomy structure, (2) the description of categories, (3) coder training, and (4) sustainability of the coding scheme-that is, comparison of the annotations provided by trained versus novice coders. The outcomes of the project are threefold: We provide methodological guidelines for semantic feature classification; we provide a revised and adapted taxonomy that can (arguably) be applied to both concrete and abstract concepts; and we provide a dataset of annotated semantic feature norms.
منابع مشابه
Lexical Semantics and Selection of TAM in Bantu Languages: A Case of Semantic Classification of Kiswahili Verbs
The existing literature on Bantu verbal semantics demonstrated that inherent semantic content of verbs pairs directly with the selection of tense, aspect and modality formatives in Bantu languages like Chasu, Lucazi, Lusamia, and Shiyeyi. Thus, the gist of this paper is the articulation of semantic classification of verbs in Kiswahili based on the selection of TAM types. This is because the sem...
متن کاملVHR Semantic Labeling by Random Forest Classification and Fusion of Spectral and Spatial Features on Google Earth Engine
Semantic labeling is an active field in remote sensing applications. Although handling high detailed objects in Very High Resolution (VHR) optical image and VHR Digital Surface Model (DSM) is a challenging task, it can improve the accuracy of semantic labeling methods. In this paper, a semantic labeling method is proposed by fusion of optical and normalized DSM data. Spectral and spatial featur...
متن کاملImage Classification via Sparse Representation and Subspace Alignment
Image representation is a crucial problem in image processing where there exist many low-level representations of image, i.e., SIFT, HOG and so on. But there is a missing link across low-level and high-level semantic representations. In fact, traditional machine learning approaches, e.g., non-negative matrix factorization, sparse representation and principle component analysis are employed to d...
متن کاملA Joint Semantic Vector Representation Model for Text Clustering and Classification
Text clustering and classification are two main tasks of text mining. Feature selection plays the key role in the quality of the clustering and classification results. Although word-based features such as term frequency-inverse document frequency (TF-IDF) vectors have been widely used in different applications, their shortcoming in capturing semantic concepts of text motivated researches to use...
متن کاملSemantic Feature Analysis Treatment for Anomia of Two Nonfluent Persian-Speaking Aphasic Patients
Objectives: Semantic Feature Analysis was designed to improve lexical retrieval of aphasic patients via activation of semantic networks of the words. In this approach, the anomic patients are cured with semantic information to assist oral naming. The purpose of this study was to examine the effects of Semantic Feature Analysis treatment on anomia of two nonfluent aphasic patients. Methods: A...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Behavior research methods
دوره 49 6 شماره
صفحات -
تاریخ انتشار 2017